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ABSTRACT

An analytical solution for large deflections of a clamped
circular diaphragm with built-in stress is presented. The
solution is directly applicable to micromachined pressure
sensors. The solution is compared to finite element analysis
results and experimental data from a surface-
micromachined pressure sensor.
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INTRODUCTION

Several papers have recently been published regarding
the deflection characteristics of micromachined diaphragms
for application to pressure sensors and other acoustic
devices [1-5]. For these devices, the applied load is
assumed to be constant over the diaphragm surface. Optical
and capacitive based devices measure diaphragm deflection
directly, and deflected shape and amplitude is of
importance. Piezoresistive devices, which are the focus of
this work, measure deflection indirectly. Diaphragm stress
is of importance in these devices.

Micromachined pressure sensors are currently a
multibillion dollar industry. More than 16 million
disposable blood pressure sensors and 25 million manifold
absolute pressure sensors are produced annually [6]. Since
pressure sensors are primarily diaphragm-based, it is
important to have models for their stresses and strains, as
well as diaphragm deflection.

In this work, we present an analytical solution for a
clamped circular diaphragm with built-in stress and large
deflections. In general, analytical and exact variational
solutions for diaphragm behavior are desirable because of
their ease of use and the insight they provide to the
designer. Specific geometric effects can be ascertained
from these solutions. However, these solutions are
generally only applicable for small deflections. Numerical
techniques, such as Finite Element Analysis, Boundary
Element Analysis, and Finite Difference Analysis, can be
more accurate in predicting deflection behavior, especially
for large deflections. Unfortunately, these techniques
generally require more effort to use and may not supply the
same insight as analytical or exact variational solutions.

The use of plate theory is appropriate for the analysis of
micromachined thin-film diaphragms. Thin plate or small
deflection theory is often used, and is appropriate for

deflections less than 1/5 of the diaphragm thickness [7].
Large deflection or thick plate theory is used for deflections
up to three times the diaphragm thickness [7].

The work in this paper is unique, since it combines the
effects of large deflections and built-in stresses, thereby
unifying work reported by Suhir [8] and Voorthuyzen and
Bergveld [1].  Both large deflections and built-in stresses
are apt to be present in real-world micromachined devices,
especially surface-micromachined devices. The analytical
expression is compared to both finite element analysis
results and experimental results from a circular, planar,
surface-micromachined pressure sensor.

THEORY

Small Deflection/Membrane Theory

Solutions for small deflection theory and membrane theory
are well known, but are repeated here for convenience. For
small deflection, thin plate theory deflection is said to be
dominated by the resistance of the diaphragm to bending.
Deflection, w, of a clamped circular plate under a uniform
applied pressure P is given by [7]
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where r, a, are the radial coordinate and diaphragm radius,
respectively. D is the flexural rigidity, which is a
measurement of stiffness, and is given by
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where E, h, and ν are Young’s modulus, plate thickness,
and Poisson’s ratio, respectively.

In contrast to small deflections theory, deflection
in membrane theory is dominated by stresses in the plate
[2]:
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where σi is the intrinsic built-in stress of the plate.

Large Deflections with built in stress

The governing differential equations for the bending of
a circular plate are [7, 8]
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where φ is the Airy stress function and the biharmonic
operator ∇4 is given by (for azimuthal symmetry)
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Most micromachined diaphragms are considered to have
clamped boundary conditions, that is
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An additional boundary condition is required to solve the
problem. That is, that the amount of stretch, u, at the edge
of the diaphragm is zero. This is further cast in terms of the
circumferential strain through the center thickness of the
diaphragm, εθ

0, and the built-in residual strain, εi  i.e. [1]
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This is further developed to become [1]
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The deflection and Airy stress functions have the
presumed solutions
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where f is the maximum deflection of the plate. Applying
the boundary conditions of Equation (7) to Equation (10)
yields
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which has the same dependence on r as the small deflection
case. This solution, when substituted into Equation (5),
simplifies φ to
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If the boundary condition of Equation (9) is invoked, the
solution for φ becomes
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The final step in the derivation is to solve for f. This is
done by applying the Bubnov Galerkin method. But instead
of using the energy functional as the coordinate, we
minimize the governing differential equation of (4) and
assume that w(r) is orthogonal with respect to all other
coordinate functions, i.e.

04 =





 −







∂
∂

∂
∂






∂
∂−∇∫A

dAP
r
w

rrr
hwDw φ . (15)

Integrating and collecting terms gives
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This is a cubic equation with three roots. The real root of f
is given by
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The function w(r) is plotted for both small and large
deflection theory in Figure 1. The curves are nearly the
same for small deflections and diverge for larger
deflections, with thin plate theory overestimating the actual
deflection. A marked reduction of deflection is predicted by
the case of large deflections with stress.

The radial and circumferential stresses in the diaphragm,
σr and σθ are given by [8]
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and the strains can be calculated from the plane strain
condition [8]:
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Output characteristics of a piezoresistive pressure
similar to that shown in Figure 4 can be calculated using
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Figure 1. Deflection vs. Pressure for 100 µm
diameter, Si3N4 diaphragm. E = 300 GPa, ν = 0.24, h
= 1.2 µm, εi = 5.5·10–4.



Equations 19 and examples are shown in Figure 2 for
polysilicon and silicon nitride based diaphragms. The
relatively high stress present in micromachined silicon
nitride diaphragms has a profound effect on the output.
Specifically, the 100, 150, and 200 µm diameter
diaphragms all have similar sensitivity. This result is
unexpected from small deflection theory.

FINITE ELEMENT ANALYSIS

Finite element analysis (FEA) is a valuable design tool
for a diaphragm or sensor designer, since it generally gives
more accurate results than analytical solutions. Perhaps
even more important is the ability to model complex
structures, which is difficult with analytical solutions. A
circular diaphragm with fixed edges and a constant residual
stress was modeled in Abaqus. The results are summarized
in Figure 3 and are compared to the analytical solution for
several diaphragm sizes. The results agree well, with the
best agreement for the 100 µm diameter diaphragm.

EXPERIMENTAL DATA

A surface micromachined pressure sensor [9-12] is
shown in Figure 4. It is a piezoresistive sensor and hence
does not detect diaphragm deflection directly, but rather by
changes in the diaphragm stress state. The output signal of
the sensor is the output voltage of a Wheatstone bridge.

Deflection data for pressure sensors at a constant
external pressure of 12 psi was extracted with a Wyko
white light interferometer and is plotted in Figure 5, along
with the analytical expression. The data agree fairly well,
but discrepancies between the experimental data and the
analytical expression of Equations 12 and 17 may be due to
uncertainties in physical constants of the diaphragm (i.e. E
and ν), residual stress, and diaphragm thickness. All of
these parameters are difficult to measure with precision on
micron scale structures.

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
-100 -75 -50 -25 0 25 50 75 100

Radial position [µm]

D
ef

le
ct

io
n 

[µ
m

]

Analytical

FEA

Figure 3. Comparison of FEA and analytical results
for four silicon nitride diaphragm diameters: 50 µm,
100 µm, 150 µm, and 200 µm. P = 12 psi, E = 300
GPa, ν = 0.24, h = 1.4 µm, εi = 6.58·10–4.

Figure 4. Scanning electron micrograph of surface
micromachined pressure sensor diaphragm [9-12].
Diaphragm is 100 µm in diameter and has six radial
and one circumferential piezoresistor(s).
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Figure 2. Prediction of piezoresistive pressure sensor
characteristics for polysilicon (top) and silicon nitride
(bottom) diaphragms. For polysilicon: E = 180 GPa, h = 2
µm, εi = 5·10–6. For nitride: E = 300 GPa, h = 1.4 µm, εi =
5·10–6.



Output data from pressure sensors is shown in Figure 6.
The results are qualitatively similar to the analytical model
of Figure 2. The bending over of the 150 and 200 µm

diameter nitride sensors is due to the diaphragms contacting
the substrate. The 200 µm diameter curve is missing from
the polysilicon diaphragm because of an incomplete release
etch during device fabrication. As the analytical solution
predicts, sensitivity clustering does occur in the silicon
nitride diaphragm.

DISCUSSION & CONCLUSIONS

A new analytical solution for large deflections of a
clamped, circular diaphragm with built-in strain has been
presented. The solution agrees well with finite element
analysis, but less well with interferometry from an actual
surface-micromachined pressure sensor diaphragm.
Imprecise data on Young’s modulus and residual stress are
likely contributors to this discrepancy. Nevertheless, the
solution predicts the phenomenon of sensitivity clustering
in nitride-based diaphragms. This solution is a powerful,
easy to use tool for micromachinists.
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for four silicon nitride diaphragm diameters: 50 µm,
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